Homework 5 - Sequence-to-sequence

If you have any questions, feel free to email us at: ntu-ml-2021spring-ta@googlegroups.com

(4/21 Updates)

  1. Link to reference training curves.

(4/14 Updates)

  1. Link to tutorial video part 1 part 2.
  2. Now defaults to load "avg_last_5_checkpoint.pt" to generate prediction.
  3. Expected run time on Colab with Tesla T4
Baseline Details Total Time
Simple 2m 15s $\times$30 epochs 1hr 8m
Medium 4m $\times$30 epochs 2hr
Strong 8m $\times$30 epochs (backward)
+1hr (back-translation)
+15m $\times$30 epochs (forward)
12hr 30m

Sequence-to-Sequence Introduction

  • Typical sequence-to-sequence (seq2seq) models are encoder-decoder models, which usually consists of two parts, the encoder and decoder, respectively. These two parts can be implemented with recurrent neural network (RNN) or transformer, primarily to deal with input/output sequences of dynamic length.
  • Encoder encodes a sequence of inputs, such as text, video or audio, into a single vector, which can be viewed as the abstractive representation of the inputs, containing information of the whole sequence.
  • Decoder decodes the vector output of encoder one step at a time, until the final output sequence is complete. Every decoding step is affected by previous step(s). Generally, one would add “< BOS >” at the begining of the sequence to indicate start of decoding, and “< EOS >” at the end to indicate end of decoding.

seq2seq

Homework Description

  • English to Chinese (Traditional) Translation

    • Input: an English sentence (e.g. tom is a student .)
    • Output: the Chinese translation (e.g. 湯姆 是 個 學生 。)
  • TODO

    • Train a simple RNN seq2seq to acheive translation
    • Switch to transformer model to boost performance
    • Apply Back-translation to furthur boost performance

Download and import required packages

1
2
!pip install 'torch>=1.6.0' editdistance matplotlib sacrebleu sacremoses sentencepiece tqdm wandb
!pip install --upgrade jupyter ipywidgets
1
2
3
!git clone https://github.com/pytorch/fairseq.git
!cd fairseq && git checkout 9a1c497
!pip install --upgrade ./fairseq/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import sys
import pdb
import pprint
import logging
import os
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
import numpy as np
import tqdm.auto as tqdm
from pathlib import Path
from argparse import Namespace
from fairseq import utils

import matplotlib.pyplot as plt

Fix random seed

1
2
3
4
5
6
7
8
9
seed = 73
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

Dataset Information

En-Zh Bilingual Parallel Corpus

  • TED2020
    • Raw: 398,066 (sentences)
    • Processed: 393,980 (sentences)

Testdata

  • Size: 4,000 (sentences)
  • Chinese translation is undisclosed. The provided (.zh) file is psuedo translation, each line is a ‘。’

Dataset Download

Install megatools (optional)

1
#!apt-get install megatools

Download and extract

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
data_dir = './DATA/rawdata'
dataset_name = 'ted2020'
urls = (
'"https://onedrive.live.com/download?cid=3E549F3B24B238B4&resid=3E549F3B24B238B4%214989&authkey=AGgQ-DaR8eFSl1A"',
'"https://onedrive.live.com/download?cid=3E549F3B24B238B4&resid=3E549F3B24B238B4%214987&authkey=AA4qP_azsicwZZM"',
# # If the above links die, use the following instead.
# "https://www.csie.ntu.edu.tw/~r09922057/ML2021-hw5/ted2020.tgz",
# "https://www.csie.ntu.edu.tw/~r09922057/ML2021-hw5/test.tgz",
# # If the above links die, use the following instead.
# "https://mega.nz/#!vEcTCISJ!3Rw0eHTZWPpdHBTbQEqBDikDEdFPr7fI8WxaXK9yZ9U",
# "https://mega.nz/#!zNcnGIoJ!oPJX9AvVVs11jc0SaK6vxP_lFUNTkEcK2WbxJpvjU5Y",
)
file_names = (
'ted2020.tgz', # train & dev
'test.tgz', # test
)
prefix = Path(data_dir).absolute() / dataset_name

prefix.mkdir(parents=True, exist_ok=True)
for u, f in zip(urls, file_names):
path = prefix/f
if not path.exists():
if 'mega' in u:
!megadl {u} --path {path}
else:
!wget {u} -O {path}
if path.suffix == ".tgz":
!tar -xvf {path} -C {prefix}
elif path.suffix == ".zip":
!unzip -o {path} -d {prefix}
!mv {prefix/'raw.en'} {prefix/'train_dev.raw.en'}
!mv {prefix/'raw.zh'} {prefix/'train_dev.raw.zh'}
!mv {prefix/'test.en'} {prefix/'test.raw.en'}
!mv {prefix/'test.zh'} {prefix/'test.raw.zh'}

Language

1
2
3
4
5
src_lang = 'en'
tgt_lang = 'zh'

data_prefix = f'{prefix}/train_dev.raw'
test_prefix = f'{prefix}/test.raw'
1
2
!head {data_prefix+'.'+src_lang} -n 5
!head {data_prefix+'.'+tgt_lang} -n 5

Preprocess files

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import re

def strQ2B(ustring):
"""Full width -> half width"""
# reference:https://ithelp.ithome.com.tw/articles/10233122
ss = []
for s in ustring:
rstring = ""
for uchar in s:
inside_code = ord(uchar)
if inside_code == 12288: # Full width space: direct conversion
inside_code = 32
elif (inside_code >= 65281 and inside_code <= 65374): # Full width chars (except space) conversion
inside_code -= 65248
rstring += chr(inside_code)
ss.append(rstring)
return ''.join(ss)

def clean_s(s, lang):
if lang == 'en':
s = re.sub(r"\([^()]*\)", "", s) # remove ([text])
s = s.replace('-', '') # remove '-'
s = re.sub('([.,;!?()\"])', r' \1 ', s) # keep punctuation
elif lang == 'zh':
s = strQ2B(s) # Q2B
s = re.sub(r"\([^()]*\)", "", s) # remove ([text])
s = s.replace(' ', '')
s = s.replace('—', '')
s = s.replace('“', '"')
s = s.replace('”', '"')
s = s.replace('_', '')
s = re.sub('([。,;!?()\"~「」])', r' \1 ', s) # keep punctuation
s = ' '.join(s.strip().split())
return s

def len_s(s, lang):
if lang == 'zh':
return len(s)
return len(s.split())

def clean_corpus(prefix, l1, l2, ratio=9, max_len=1000, min_len=1):
if Path(f'{prefix}.clean.{l1}').exists() and Path(f'{prefix}.clean.{l2}').exists():
print(f'{prefix}.clean.{l1} & {l2} exists. skipping clean.')
return
with open(f'{prefix}.{l1}', 'r') as l1_in_f:
with open(f'{prefix}.{l2}', 'r') as l2_in_f:
with open(f'{prefix}.clean.{l1}', 'w') as l1_out_f:
with open(f'{prefix}.clean.{l2}', 'w') as l2_out_f:
for s1 in l1_in_f:
s1 = s1.strip()
s2 = l2_in_f.readline().strip()
s1 = clean_s(s1, l1)
s2 = clean_s(s2, l2)
s1_len = len_s(s1, l1)
s2_len = len_s(s2, l2)
if min_len > 0: # remove short sentence
if s1_len < min_len or s2_len < min_len:
continue
if max_len > 0: # remove long sentence
if s1_len > max_len or s2_len > max_len:
continue
if ratio > 0: # remove by ratio of length
if s1_len/s2_len > ratio or s2_len/s1_len > ratio:
continue
print(s1, file=l1_out_f)
print(s2, file=l2_out_f)
1
2
clean_corpus(data_prefix, src_lang, tgt_lang)
clean_corpus(test_prefix, src_lang, tgt_lang, ratio=-1, min_len=-1, max_len=-1)
1
2
!head {data_prefix+'.clean.'+src_lang} -n 5
!head {data_prefix+'.clean.'+tgt_lang} -n 5

Split into train/valid

1
2
valid_ratio = 0.01 # 3000~4000 would suffice
train_ratio = 1 - valid_ratio
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
if (prefix/f'train.clean.{src_lang}').exists() \
and (prefix/f'train.clean.{tgt_lang}').exists() \
and (prefix/f'valid.clean.{src_lang}').exists() \
and (prefix/f'valid.clean.{tgt_lang}').exists():
print(f'train/valid splits exists. skipping split.')
else:
line_num = sum(1 for line in open(f'{data_prefix}.clean.{src_lang}'))
labels = list(range(line_num))
random.shuffle(labels)
for lang in [src_lang, tgt_lang]:
train_f = open(os.path.join(data_dir, dataset_name, f'train.clean.{lang}'), 'w')
valid_f = open(os.path.join(data_dir, dataset_name, f'valid.clean.{lang}'), 'w')
count = 0
for line in open(f'{data_prefix}.clean.{lang}', 'r'):
if labels[count]/line_num < train_ratio:
train_f.write(line)
else:
valid_f.write(line)
count += 1
train_f.close()
valid_f.close()

Subword Units

Out of vocabulary (OOV) has been a major problem in machine translation. This can be alleviated by using subword units.

  • We will use the sentencepiece package
  • select ‘unigram’ or ‘byte-pair encoding (BPE)’ algorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import sentencepiece as spm
vocab_size = 8000
if (prefix/f'spm{vocab_size}.model').exists():
print(f'{prefix}/spm{vocab_size}.model exists. skipping spm_train.')
else:
spm.SentencePieceTrainer.train(
input=','.join([f'{prefix}/train.clean.{src_lang}',
f'{prefix}/valid.clean.{src_lang}',
f'{prefix}/train.clean.{tgt_lang}',
f'{prefix}/valid.clean.{tgt_lang}']),
model_prefix=prefix/f'spm{vocab_size}',
vocab_size=vocab_size,
character_coverage=1,
model_type='unigram', # 'bpe' works as well
input_sentence_size=1e6,
shuffle_input_sentence=True,
normalization_rule_name='nmt_nfkc_cf',
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
spm_model = spm.SentencePieceProcessor(model_file=str(prefix/f'spm{vocab_size}.model'))
in_tag = {
'train': 'train.clean',
'valid': 'valid.clean',
'test': 'test.raw.clean',
}
for split in ['train', 'valid', 'test']:
for lang in [src_lang, tgt_lang]:
out_path = prefix/f'{split}.{lang}'
if out_path.exists():
print(f"{out_path} exists. skipping spm_encode.")
else:
with open(prefix/f'{split}.{lang}', 'w') as out_f:
with open(prefix/f'{in_tag[split]}.{lang}', 'r') as in_f:
for line in in_f:
line = line.strip()
tok = spm_model.encode(line, out_type=str)
print(' '.join(tok), file=out_f)
1
2
!head {data_dir+'/'+dataset_name+'/train.'+src_lang} -n 5
!head {data_dir+'/'+dataset_name+'/train.'+tgt_lang} -n 5

Binarize the data with fairseq

1
2
3
4
5
6
7
8
9
10
11
12
13
binpath = Path('./DATA/data-bin', dataset_name)
if binpath.exists():
print(binpath, "exists, will not overwrite!")
else:
!python -m fairseq_cli.preprocess \
--source-lang {src_lang}\
--target-lang {tgt_lang}\
--trainpref {prefix/'train'}\
--validpref {prefix/'valid'}\
--testpref {prefix/'test'}\
--destdir {binpath}\
--joined-dictionary\
--workers 2

Configuration for Experiments

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
config = Namespace(
datadir = "./DATA/data-bin/ted2020",
savedir = "./checkpoints/rnn",
source_lang = "en",
target_lang = "zh",

# cpu threads when fetching & processing data.
num_workers=2,
# batch size in terms of tokens. gradient accumulation increases the effective batchsize.
max_tokens=8192,
accum_steps=2,

# the lr s calculated from Noam lr scheduler. you can tune the maximum lr by this factor.
lr_factor=2.,
lr_warmup=4000,

# clipping gradient norm helps alleviate gradient exploding
clip_norm=1.0,

# maximum epochs for training
max_epoch=30,
start_epoch=1,

# beam size for beam search
beam=5,
# generate sequences of maximum length ax + b, where x is the source length
max_len_a=1.2,
max_len_b=10,
# when decoding, post process sentence by removing sentencepiece symbols and jieba tokenization.
post_process = "sentencepiece",

# checkpoints
keep_last_epochs=5,
resume=None, # if resume from checkpoint name (under config.savedir)

# logging
use_wandb=False,
)

Logging

  • logging package logs ordinary messages
  • wandb logs the loss, bleu, etc. in the training process
1
2
3
4
5
6
7
8
9
10
11
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level="INFO", # "DEBUG" "WARNING" "ERROR"
stream=sys.stdout,
)
proj = "hw5.seq2seq"
logger = logging.getLogger(proj)
if config.use_wandb:
import wandb
wandb.init(project=proj, name=Path(config.savedir).stem, config=config)

CUDA Environment

1
2
3
cuda_env = utils.CudaEnvironment()
utils.CudaEnvironment.pretty_print_cuda_env_list([cuda_env])
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

Dataloading

We borrow the TranslationTask from fairseq

  • used to load the binarized data created above
  • well-implemented data iterator (dataloader)
  • built-in task.source_dictionary and task.target_dictionary are also handy
  • well-implemented beach search decoder
1
2
3
4
5
6
7
8
9
10
11
12
13
from fairseq.tasks.translation import TranslationConfig, TranslationTask

## setup task
task_cfg = TranslationConfig(
data=config.datadir,
source_lang=config.source_lang,
target_lang=config.target_lang,
train_subset="train",
required_seq_len_multiple=8,
dataset_impl="mmap",
upsample_primary=1,
)
task = TranslationTask.setup_task(task_cfg)
1
2
3
logger.info("loading data for epoch 1")
task.load_dataset(split="train", epoch=1, combine=True) # combine if you have back-translation data.
task.load_dataset(split="valid", epoch=1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
sample = task.dataset("valid")[1]
pprint.pprint(sample)
pprint.pprint(
"Source: " + \
task.source_dictionary.string(
sample['source'],
config.post_process,
)
)
pprint.pprint(
"Target: " + \
task.target_dictionary.string(
sample['target'],
config.post_process,
)
)

Dataset Iterator

  • Controls every batch to contain no more than N tokens, which optimizes GPU memory efficiency
  • Shuffles the training set for every epoch
  • Ignore sentences exceeding maximum length
  • Pad all sentences in a batch to the same length, which enables parallel computing by GPU
  • Add eos and shift one token
    • teacher forcing: to train the model to predict the next token based on prefix, we feed the right shifted target sequence as the decoder input.
    • generally, prepending bos to the target would do the job (as shown below)
      seq2seq
    • in fairseq however, this is done by moving the eos token to the begining. Empirically, this has the same effect. For instance:
    1
    2
    3
    4
    # output target (target) and Decoder input (prev_output_tokens):
    eos = 2
    target = 419, 711, 238, 888, 792, 60, 968, 8, 2
    prev_output_tokens = 2, 419, 711, 238, 888, 792, 60, 968, 8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def load_data_iterator(task, split, epoch=1, max_tokens=4000, num_workers=1, cached=True):
batch_iterator = task.get_batch_iterator(
dataset=task.dataset(split),
max_tokens=max_tokens,
max_sentences=None,
max_positions=utils.resolve_max_positions(
task.max_positions(),
max_tokens,
),
ignore_invalid_inputs=True,
seed=seed,
num_workers=num_workers,
epoch=epoch,
disable_iterator_cache=not cached,
# Set this to False to speed up. However, if set to False, changing max_tokens beyond
# first call of this method has no effect.
)
return batch_iterator

demo_epoch_obj = load_data_iterator(task, "valid", epoch=1, max_tokens=20, num_workers=1, cached=False)
demo_iter = demo_epoch_obj.next_epoch_itr(shuffle=True)
sample = next(demo_iter)
sample
  • each batch is a python dict, with string key and Tensor value. Contents are described below:
1
2
3
4
5
6
7
8
9
10
11
batch = {
"id": id, # id for each example
"nsentences": len(samples), # batch size (sentences)
"ntokens": ntokens, # batch size (tokens)
"net_input": {
"src_tokens": src_tokens, # sequence in source language
"src_lengths": src_lengths, # sequence length of each example before padding
"prev_output_tokens": prev_output_tokens, # right shifted target, as mentioned above.
},
"target": target, # target sequence
}

Model Architecture

  • We again inherit fairseq’s encoder, decoder and model, so that in the testing phase we can directly leverage fairseq’s beam search decoder.
1
2
3
4
5
from fairseq.models import (
FairseqEncoder,
FairseqIncrementalDecoder,
FairseqEncoderDecoderModel
)

Encoder

  • The Encoder is a RNN or Transformer Encoder. The following description is for RNN. For every input token, Encoder will generate a output vector and a hidden states vector, and the hidden states vector is passed on to the next step. In other words, the Encoder sequentially reads in the input sequence, and outputs a single vector at each timestep, then finally outputs the final hidden states, or content vector, at the last timestep.

  • Parameters:

    • args
      • encoder_embed_dim: the dimension of embeddings, this compresses the one-hot vector into fixed dimensions, which achieves dimension reduction
      • encoder_ffn_embed_dim is the dimension of hidden states and output vectors
      • encoder_layers is the number of layers for Encoder RNN
      • dropout determines the probability of a neuron’s activation being set to 0, in order to prevent overfitting. Generally this is applied in training, and removed in testing.
    • dictionary: the dictionary provided by fairseq. it’s used to obtain the padding index, and in turn the encoder padding mask.
    • embed_tokens: an instance of token embeddings (nn.Embedding)
  • Inputs:

    • src_tokens: integer sequence representing english e.g. 1, 28, 29, 205, 2
  • Outputs:

    • outputs: the output of RNN at each timestep, can be furthur processed by Attention
    • final_hiddens: the hidden states of each timestep, will be passed to decoder for decoding
    • encoder_padding_mask: this tells the decoder which position to ignore
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class RNNEncoder(FairseqEncoder):
def __init__(self, args, dictionary, embed_tokens):
super().__init__(dictionary)
self.embed_tokens = embed_tokens

self.embed_dim = args.encoder_embed_dim
self.hidden_dim = args.encoder_ffn_embed_dim
self.num_layers = args.encoder_layers

self.dropout_in_module = nn.Dropout(args.dropout)
self.rnn = nn.GRU(
self.embed_dim,
self.hidden_dim,
self.num_layers,
dropout=args.dropout,
batch_first=False,
bidirectional=True
)
self.dropout_out_module = nn.Dropout(args.dropout)

self.padding_idx = dictionary.pad()

def combine_bidir(self, outs, bsz: int):
out = outs.view(self.num_layers, 2, bsz, -1).transpose(1, 2).contiguous()
return out.view(self.num_layers, bsz, -1)

def forward(self, src_tokens, **unused):
bsz, seqlen = src_tokens.size()

# get embeddings
x = self.embed_tokens(src_tokens)
x = self.dropout_in_module(x)

# B x T x C -> T x B x C
x = x.transpose(0, 1)

# pass thru bidirectional RNN
h0 = x.new_zeros(2 * self.num_layers, bsz, self.hidden_dim)
x, final_hiddens = self.rnn(x, h0)
outputs = self.dropout_out_module(x)
# outputs = [sequence len, batch size, hid dim * directions]
# hidden = [num_layers * directions, batch size , hid dim]

# Since Encoder is bidirectional, we need to concatenate the hidden states of two directions
final_hiddens = self.combine_bidir(final_hiddens, bsz)
# hidden = [num_layers x batch x num_directions*hidden]

encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
return tuple(
(
outputs, # seq_len x batch x hidden
final_hiddens, # num_layers x batch x num_directions*hidden
encoder_padding_mask, # seq_len x batch
)
)

def reorder_encoder_out(self, encoder_out, new_order):
# This is used by fairseq's beam search. How and why is not particularly important here.
return tuple(
(
encoder_out[0].index_select(1, new_order),
encoder_out[1].index_select(1, new_order),
encoder_out[2].index_select(1, new_order),
)
)

Attention

  • When the input sequence is long, “content vector” alone cannot accurately represent the whole sequence, attention mechanism can provide the Decoder more information.

  • According to the Decoder embeddings of the current timestep, match the Encoder outputs with decoder embeddings to determine correlation, and then sum the Encoder outputs weighted by the correlation as the input to Decoder RNN.

  • Common attention implementations use neural network / dot product as the correlation between query (decoder embeddings) and key (Encoder outputs), followed by softmax to obtain a distribution, and finally values (Encoder outputs) is weighted sum-ed by said distribution.

  • Parameters:

    • input_embed_dim: dimensionality of key, should be that of the vector in decoder to attend others
    • source_embed_dim: dimensionality of query, should be that of the vector to be attended to (encoder outputs)
    • output_embed_dim: dimensionality of value, should be that of the vector after attention, expected by the next layer
  • Inputs:

    • inputs: is the key, the vector to attend to others
    • encoder_outputs: is the query/value, the vector to be attended to
    • encoder_padding_mask: this tells the decoder which position to ignore
  • Outputs:

    • output: the context vector after attention
    • attention score: the attention distribution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class AttentionLayer(nn.Module):
def __init__(self, input_embed_dim, source_embed_dim, output_embed_dim, bias=False):
super().__init__()

self.input_proj = nn.Linear(input_embed_dim, source_embed_dim, bias=bias)
self.output_proj = nn.Linear(
input_embed_dim + source_embed_dim, output_embed_dim, bias=bias
)

def forward(self, inputs, encoder_outputs, encoder_padding_mask):
# inputs: T, B, dim
# encoder_outputs: S x B x dim
# padding mask: S x B

# convert all to batch first
inputs = inputs.transpose(1,0) # B, T, dim
encoder_outputs = encoder_outputs.transpose(1,0) # B, S, dim
encoder_padding_mask = encoder_padding_mask.transpose(1,0) # B, S

# project to the dimensionality of encoder_outputs
x = self.input_proj(inputs)

# compute attention
# (B, T, dim) x (B, dim, S) = (B, T, S)
attn_scores = torch.bmm(x, encoder_outputs.transpose(1,2))

# cancel the attention at positions corresponding to padding
if encoder_padding_mask is not None:
# leveraging broadcast B, S -> (B, 1, S)
encoder_padding_mask = encoder_padding_mask.unsqueeze(1)
attn_scores = (
attn_scores.float()
.masked_fill_(encoder_padding_mask, float("-inf"))
.type_as(attn_scores)
) # FP16 support: cast to float and back

# softmax on the dimension corresponding to source sequence
attn_scores = F.softmax(attn_scores, dim=-1)

# shape (B, T, S) x (B, S, dim) = (B, T, dim) weighted sum
x = torch.bmm(attn_scores, encoder_outputs)

# (B, T, dim)
x = torch.cat((x, inputs), dim=-1)
x = torch.tanh(self.output_proj(x)) # concat + linear + tanh

# restore shape (B, T, dim) -> (T, B, dim)
return x.transpose(1,0), attn_scores

Decoder

  • The hidden states of Decoder will be initialized by the final hidden states of Encoder (the content vector)
  • At the same time, Decoder will change its hidden states based on the input of the current timestep (the outputs of previous timesteps), and generates an output
  • Attention improves the performance
  • The seq2seq steps are implemented in decoder, so that later the Seq2Seq class can accept RNN and Transformer, without furthur modification.
  • Parameters:
    • args
      • decoder_embed_dim: is the dimensionality of the decoder embeddings, similar to encoder_embed_dim,
      • decoder_ffn_embed_dim: is the dimensionality of the decoder RNN hidden states, similar to encoder_ffn_embed_dim
      • decoder_layers: number of layers of RNN decoder
      • share_decoder_input_output_embed: usually, the projection matrix of the decoder will share weights with the decoder input embeddings
    • dictionary: the dictionary provided by fairseq
    • embed_tokens: an instance of token embeddings (nn.Embedding)
  • Inputs:
    • prev_output_tokens: integer sequence representing the right-shifted target e.g. 1, 28, 29, 205, 2
    • encoder_out: encoder’s output.
    • incremental_state: in order to speed up decoding during test time, we will save the hidden state of each timestep. see forward() for details.
  • Outputs:
    • outputs: the logits (before softmax) output of decoder for each timesteps
    • extra: unsused
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
class RNNDecoder(FairseqIncrementalDecoder):
def __init__(self, args, dictionary, embed_tokens):
super().__init__(dictionary)
self.embed_tokens = embed_tokens

assert args.decoder_layers == args.encoder_layers, f"""seq2seq rnn requires that encoder
and decoder have same layers of rnn. got: {args.encoder_layers, args.decoder_layers}"""
assert args.decoder_ffn_embed_dim == args.encoder_ffn_embed_dim*2, f"""seq2seq-rnn requires
that decoder hidden to be 2*encoder hidden dim. got: {args.decoder_ffn_embed_dim, args.encoder_ffn_embed_dim*2}"""

self.embed_dim = args.decoder_embed_dim
self.hidden_dim = args.decoder_ffn_embed_dim
self.num_layers = args.decoder_layers


self.dropout_in_module = nn.Dropout(args.dropout)
self.rnn = nn.GRU(
self.embed_dim,
self.hidden_dim,
self.num_layers,
dropout=args.dropout,
batch_first=False,
bidirectional=False
)
self.attention = AttentionLayer(
self.embed_dim, self.hidden_dim, self.embed_dim, bias=False
)
# self.attention = None
self.dropout_out_module = nn.Dropout(args.dropout)

if self.hidden_dim != self.embed_dim:
self.project_out_dim = nn.Linear(self.hidden_dim, self.embed_dim)
else:
self.project_out_dim = None

if args.share_decoder_input_output_embed:
self.output_projection = nn.Linear(
self.embed_tokens.weight.shape[1],
self.embed_tokens.weight.shape[0],
bias=False,
)
self.output_projection.weight = self.embed_tokens.weight
else:
self.output_projection = nn.Linear(
self.output_embed_dim, len(dictionary), bias=False
)
nn.init.normal_(
self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
)

def forward(self, prev_output_tokens, encoder_out, incremental_state=None, **unused):
# extract the outputs from encoder
encoder_outputs, encoder_hiddens, encoder_padding_mask = encoder_out
# outputs: seq_len x batch x num_directions*hidden
# encoder_hiddens: num_layers x batch x num_directions*encoder_hidden
# padding_mask: seq_len x batch

if incremental_state is not None and len(incremental_state) > 0:
# if the information from last timestep is retained, we can continue from there instead of starting from bos
prev_output_tokens = prev_output_tokens[:, -1:]
cache_state = self.get_incremental_state(incremental_state, "cached_state")
prev_hiddens = cache_state["prev_hiddens"]
else:
# incremental state does not exist, either this is training time, or the first timestep of test time
# prepare for seq2seq: pass the encoder_hidden to the decoder hidden states
prev_hiddens = encoder_hiddens

bsz, seqlen = prev_output_tokens.size()

# embed tokens
x = self.embed_tokens(prev_output_tokens)
x = self.dropout_in_module(x)

# B x T x C -> T x B x C
x = x.transpose(0, 1)

# decoder-to-encoder attention
if self.attention is not None:
x, attn = self.attention(x, encoder_outputs, encoder_padding_mask)

# pass thru unidirectional RNN
x, final_hiddens = self.rnn(x, prev_hiddens)
# outputs = [sequence len, batch size, hid dim]
# hidden = [num_layers * directions, batch size , hid dim]
x = self.dropout_out_module(x)

# project to embedding size (if hidden differs from embed size, and share_embedding is True,
# we need to do an extra projection)
if self.project_out_dim != None:
x = self.project_out_dim(x)

# project to vocab size
x = self.output_projection(x)

# T x B x C -> B x T x C
x = x.transpose(1, 0)

# if incremental, record the hidden states of current timestep, which will be restored in the next timestep
cache_state = {
"prev_hiddens": final_hiddens,
}
self.set_incremental_state(incremental_state, "cached_state", cache_state)

return x, None

def reorder_incremental_state(
self,
incremental_state,
new_order,
):
# This is used by fairseq's beam search. How and why is not particularly important here.
cache_state = self.get_incremental_state(incremental_state, "cached_state")
prev_hiddens = cache_state["prev_hiddens"]
prev_hiddens = [p.index_select(0, new_order) for p in prev_hiddens]
cache_state = {
"prev_hiddens": torch.stack(prev_hiddens),
}
self.set_incremental_state(incremental_state, "cached_state", cache_state)
return

Seq2Seq

  • Composed of Encoder and Decoder
  • Recieves inputs and pass to Encoder
  • Pass the outputs from Encoder to Decoder
  • Decoder will decode according to outputs of previous timesteps as well as Encoder outputs
  • Once done decoding, return the Decoder outputs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Seq2Seq(FairseqEncoderDecoderModel):
def __init__(self, args, encoder, decoder):
super().__init__(encoder, decoder)
self.args = args

def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
return_all_hiddens: bool = True,
):
"""
Run the forward pass for an encoder-decoder model.
"""
encoder_out = self.encoder(
src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
)
logits, extra = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
src_lengths=src_lengths,
return_all_hiddens=return_all_hiddens,
)
return logits, extra

Model Initialization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# # HINT: transformer architecture
# from fairseq.models.transformer import (
# TransformerEncoder,
# TransformerDecoder,
# )

def build_model(args, task):
""" build a model instance based on hyperparameters """
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary

# token embeddings
encoder_embed_tokens = nn.Embedding(len(src_dict), args.encoder_embed_dim, src_dict.pad())
decoder_embed_tokens = nn.Embedding(len(tgt_dict), args.decoder_embed_dim, tgt_dict.pad())

# encoder decoder
# HINT: TODO: switch to TransformerEncoder & TransformerDecoder
encoder = RNNEncoder(args, src_dict, encoder_embed_tokens)
decoder = RNNDecoder(args, tgt_dict, decoder_embed_tokens)

# sequence to sequence model
model = Seq2Seq(args, encoder, decoder)

# initialization for seq2seq model is important, requires extra handling
def init_params(module):
from fairseq.modules import MultiheadAttention
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, MultiheadAttention):
module.q_proj.weight.data.normal_(mean=0.0, std=0.02)
module.k_proj.weight.data.normal_(mean=0.0, std=0.02)
module.v_proj.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.RNNBase):
for name, param in module.named_parameters():
if "weight" in name or "bias" in name:
param.data.uniform_(-0.1, 0.1)

# weight initialization
model.apply(init_params)
return model

reference implementation

model embedding dim encoder ffn encoder layers decoder ffn decoder layers
RNN 256 512 1 1024 1
Transformer 256 1024 4 1024 4

For strong baseline, please refer to the hyperparameters for transformer-base in Table 3 in Attention is all you need

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
arch_args = Namespace(
encoder_embed_dim=256,
encoder_ffn_embed_dim=512,
encoder_layers=1,
decoder_embed_dim=256,
decoder_ffn_embed_dim=1024,
decoder_layers=1,
share_decoder_input_output_embed=True,
dropout=0.3,
)

# # HINT: these patches on parameters for Transformer
# def add_transformer_args(args):
# args.encoder_attention_heads=4
# args.encoder_normalize_before=True

# args.decoder_attention_heads=4
# args.decoder_normalize_before=True

# args.activation_fn="relu"
# args.max_source_positions=1024
# args.max_target_positions=1024

# # patches on default parameters for Transformer (those not set above)
# from fairseq.models.transformer import base_architecture
# base_architecture(arch_args)

# add_transformer_args(arch_args)
1
2
if config.use_wandb:
wandb.config.update(vars(arch_args))
1
2
model = build_model(arch_args, task)
logger.info(model)

Optimization

Loss: Label Smoothing Regularization

  • let the model learn to generate less concentrated distribution, and prevent over-confidence
  • sometimes the ground truth may not be the only answer. thus, when calculating loss, we reserve some probability for incorrect labels
  • avoids overfitting

code source

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class LabelSmoothedCrossEntropyCriterion(nn.Module):
def __init__(self, smoothing, ignore_index=None, reduce=True):
super().__init__()
self.smoothing = smoothing
self.ignore_index = ignore_index
self.reduce = reduce

def forward(self, lprobs, target):
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
# nll: Negative log likelihood,the cross-entropy when target is one-hot. following line is same as F.nll_loss
nll_loss = -lprobs.gather(dim=-1, index=target)
# reserve some probability for other labels. thus when calculating cross-entropy,
# equivalent to summing the log probs of all labels
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if self.ignore_index is not None:
pad_mask = target.eq(self.ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
if self.reduce:
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
# when calculating cross-entropy, add the loss of other labels
eps_i = self.smoothing / lprobs.size(-1)
loss = (1.0 - self.smoothing) * nll_loss + eps_i * smooth_loss
return loss

# generally, 0.1 is good enough
criterion = LabelSmoothedCrossEntropyCriterion(
smoothing=0.1,
ignore_index=task.target_dictionary.pad(),
)

Optimizer: Adam + lr scheduling

Inverse square root scheduling is important to the stability when training Transformer. It’s later used on RNN as well.
Update the learning rate according to the following equation. Linearly increase the first stage, then decay proportionally to the inverse square root of timestep.

lrate=dmodel0.5min(step_num0.5,step_numwarmup_steps1.5)lrate = d_{\text{model}}^{-0.5}\cdot\min({step\_num}^{-0.5},{step\_num}\cdot{warmup\_steps}^{-1.5})

code source

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0

@property
def param_groups(self):
return self.optimizer.param_groups

def multiply_grads(self, c):
"""Multiplies grads by a constant *c*."""
for group in self.param_groups:
for p in group['params']:
if p.grad is not None:
p.grad.data.mul_(c)

def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()

def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return 0 if not step else self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))

Scheduling Visualized

1
2
3
4
5
6
7
8
optimizer = NoamOpt(
model_size=arch_args.encoder_embed_dim,
factor=config.lr_factor,
warmup=config.lr_warmup,
optimizer=torch.optim.AdamW(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=0.0001))
plt.plot(np.arange(1, 100000), [optimizer.rate(i) for i in range(1, 100000)])
plt.legend([f"{optimizer.model_size}:{optimizer.warmup}"])
None

Training Procedure

Training

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from fairseq.data import iterators
from torch.cuda.amp import GradScaler, autocast

def train_one_epoch(epoch_itr, model, task, criterion, optimizer, accum_steps=1):
itr = epoch_itr.next_epoch_itr(shuffle=True)
itr = iterators.GroupedIterator(itr, accum_steps) # gradient accumulation: update every accum_steps samples

stats = {"loss": []}
scaler = GradScaler() # automatic mixed precision (amp)

model.train()
progress = tqdm.tqdm(itr, desc=f"train epoch {epoch_itr.epoch}", leave=False)
for samples in progress:
model.zero_grad()
accum_loss = 0
sample_size = 0
# gradient accumulation: update every accum_steps samples
for i, sample in enumerate(samples):
if i == 1:
# emptying the CUDA cache after the first step can reduce the chance of OOM
torch.cuda.empty_cache()

sample = utils.move_to_cuda(sample, device=device)
target = sample["target"]
sample_size_i = sample["ntokens"]
sample_size += sample_size_i

# mixed precision training
with autocast():
net_output = model.forward(**sample["net_input"])
lprobs = F.log_softmax(net_output[0], -1)
loss = criterion(lprobs.view(-1, lprobs.size(-1)), target.view(-1))

# logging
accum_loss += loss.item()
# back-prop
scaler.scale(loss).backward()

scaler.unscale_(optimizer)
optimizer.multiply_grads(1 / (sample_size or 1.0)) # (sample_size or 1.0) handles the case of a zero gradient
gnorm = nn.utils.clip_grad_norm_(model.parameters(), config.clip_norm) # grad norm clipping prevents gradient exploding

scaler.step(optimizer)
scaler.update()

# logging
loss_print = accum_loss/sample_size
stats["loss"].append(loss_print)
progress.set_postfix(loss=loss_print)
if config.use_wandb:
wandb.log({
"train/loss": loss_print,
"train/grad_norm": gnorm.item(),
"train/lr": optimizer.rate(),
"train/sample_size": sample_size,
})

loss_print = np.mean(stats["loss"])
logger.info(f"training loss: {loss_print:.4f}")
return stats

Validation & Inference

To prevent overfitting, validation is required every epoch to validate the performance on unseen data.

  • the procedure is essensially same as training, with the addition of inference step
  • after validation we can save the model weights

Validation loss alone cannot describe the actual performance of the model

  • Directly produce translation hypotheses based on current model, then calculate BLEU with the reference translation
  • We can also manually examine the hypotheses’ quality
  • We use fairseq’s sequence generator for beam search to generate translation hypotheses
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# fairseq's beam search generator
# given model and input seqeunce, produce translation hypotheses by beam search
sequence_generator = task.build_generator([model], config)

def decode(toks, dictionary):
# convert from Tensor to human readable sentence
s = dictionary.string(
toks.int().cpu(),
config.post_process,
)
return s if s else "<unk>"

def inference_step(sample, model):
gen_out = sequence_generator.generate([model], sample)
srcs = []
hyps = []
refs = []
for i in range(len(gen_out)):
# for each sample, collect the input, hypothesis and reference, later be used to calculate BLEU
srcs.append(decode(
utils.strip_pad(sample["net_input"]["src_tokens"][i], task.source_dictionary.pad()),
task.source_dictionary,
))
hyps.append(decode(
gen_out[i][0]["tokens"], # 0 indicates using the top hypothesis in beam
task.target_dictionary,
))
refs.append(decode(
utils.strip_pad(sample["target"][i], task.target_dictionary.pad()),
task.target_dictionary,
))
return srcs, hyps, refs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import shutil
import sacrebleu

def validate(model, task, criterion, log_to_wandb=True):
logger.info('begin validation')
itr = load_data_iterator(task, "valid", 1, config.max_tokens, config.num_workers).next_epoch_itr(shuffle=False)

stats = {"loss":[], "bleu": 0, "srcs":[], "hyps":[], "refs":[]}
srcs = []
hyps = []
refs = []

model.eval()
progress = tqdm.tqdm(itr, desc=f"validation", leave=False)
with torch.no_grad():
for i, sample in enumerate(progress):
# validation loss
sample = utils.move_to_cuda(sample, device=device)
net_output = model.forward(**sample["net_input"])

lprobs = F.log_softmax(net_output[0], -1)
target = sample["target"]
sample_size = sample["ntokens"]
loss = criterion(lprobs.view(-1, lprobs.size(-1)), target.view(-1)) / sample_size
progress.set_postfix(valid_loss=loss.item())
stats["loss"].append(loss)

# do inference
s, h, r = inference_step(sample, model)
srcs.extend(s)
hyps.extend(h)
refs.extend(r)

tok = 'zh' if task.cfg.target_lang == 'zh' else '13a'
stats["loss"] = torch.stack(stats["loss"]).mean().item()
stats["bleu"] = sacrebleu.corpus_bleu(hyps, [refs], tokenize=tok) # 計算BLEU score
stats["srcs"] = srcs
stats["hyps"] = hyps
stats["refs"] = refs

if config.use_wandb and log_to_wandb:
wandb.log({
"valid/loss": stats["loss"],
"valid/bleu": stats["bleu"].score,
}, commit=False)

showid = np.random.randint(len(hyps))
logger.info("example source: " + srcs[showid])
logger.info("example hypothesis: " + hyps[showid])
logger.info("example reference: " + refs[showid])

# show bleu results
logger.info(f"validation loss:\t{stats['loss']:.4f}")
logger.info(stats["bleu"].format())
return stats

Save and Load Model Weights

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def validate_and_save(model, task, criterion, optimizer, epoch, save=True):
stats = validate(model, task, criterion)
bleu = stats['bleu']
loss = stats['loss']
if save:
# save epoch checkpoints
savedir = Path(config.savedir).absolute()
savedir.mkdir(parents=True, exist_ok=True)

check = {
"model": model.state_dict(),
"stats": {"bleu": bleu.score, "loss": loss},
"optim": {"step": optimizer._step}
}
torch.save(check, savedir/f"checkpoint{epoch}.pt")
shutil.copy(savedir/f"checkpoint{epoch}.pt", savedir/f"checkpoint_last.pt")
logger.info(f"saved epoch checkpoint: {savedir}/checkpoint{epoch}.pt")

# save epoch samples
with open(savedir/f"samples{epoch}.{config.source_lang}-{config.target_lang}.txt", "w") as f:
for s, h in zip(stats["srcs"], stats["hyps"]):
f.write(f"{s}\t{h}\n")

# get best valid bleu
if getattr(validate_and_save, "best_bleu", 0) < bleu.score:
validate_and_save.best_bleu = bleu.score
torch.save(check, savedir/f"checkpoint_best.pt")

del_file = savedir / f"checkpoint{epoch - config.keep_last_epochs}.pt"
if del_file.exists():
del_file.unlink()

return stats

def try_load_checkpoint(model, optimizer=None, name=None):
name = name if name else "checkpoint_last.pt"
checkpath = Path(config.savedir)/name
if checkpath.exists():
check = torch.load(checkpath)
model.load_state_dict(check["model"])
stats = check["stats"]
step = "unknown"
if optimizer != None:
optimizer._step = step = check["optim"]["step"]
logger.info(f"loaded checkpoint {checkpath}: step={step} loss={stats['loss']} bleu={stats['bleu']}")
else:
logger.info(f"no checkpoints found at {checkpath}!")

Main

Training loop

1
2
model = model.to(device=device)
criterion = criterion.to(device=device)
1
!nvidia-smi
1
2
3
4
5
6
7
8
9
10
11
12
logger.info("task: {}".format(task.__class__.__name__))
logger.info("encoder: {}".format(model.encoder.__class__.__name__))
logger.info("decoder: {}".format(model.decoder.__class__.__name__))
logger.info("criterion: {}".format(criterion.__class__.__name__))
logger.info("optimizer: {}".format(optimizer.__class__.__name__))
logger.info(
"num. model params: {:,} (num. trained: {:,})".format(
sum(p.numel() for p in model.parameters()),
sum(p.numel() for p in model.parameters() if p.requires_grad),
)
)
logger.info(f"max tokens per batch = {config.max_tokens}, accumulate steps = {config.accum_steps}")
1
2
3
4
5
6
7
8
epoch_itr = load_data_iterator(task, "train", config.start_epoch, config.max_tokens, config.num_workers)
try_load_checkpoint(model, optimizer, name=config.resume)
while epoch_itr.next_epoch_idx <= config.max_epoch:
# train for one epoch
train_one_epoch(epoch_itr, model, task, criterion, optimizer, config.accum_steps)
stats = validate_and_save(model, task, criterion, optimizer, epoch=epoch_itr.epoch)
logger.info("end of epoch {}".format(epoch_itr.epoch))
epoch_itr = load_data_iterator(task, "train", epoch_itr.next_epoch_idx, config.max_tokens, config.num_workers)

Submission

1
2
3
4
5
6
# averaging a few checkpoints can have a similar effect to ensemble
checkdir=config.savedir
!python ./fairseq/scripts/average_checkpoints.py \
--inputs {checkdir} \
--num-epoch-checkpoints 5 \
--output {checkdir}/avg_last_5_checkpoint.pt

Confirm model weights used to generate submission

1
2
3
4
5
6
# checkpoint_last.pt : latest epoch
# checkpoint_best.pt : highest validation bleu
# avg_last_5_checkpoint.pt: the average of last 5 epochs
try_load_checkpoint(model, name="avg_last_5_checkpoint.pt")
validate(model, task, criterion, log_to_wandb=False)
None

Generate Prediction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
def generate_prediction(model, task, split="test", outfile="./prediction.txt"):
task.load_dataset(split=split, epoch=1)
itr = load_data_iterator(task, split, 1, config.max_tokens, config.num_workers).next_epoch_itr(shuffle=False)

idxs = []
hyps = []

model.eval()
progress = tqdm.tqdm(itr, desc=f"prediction")
with torch.no_grad():
for i, sample in enumerate(progress):
# validation loss
sample = utils.move_to_cuda(sample, device=device)

# do inference
s, h, r = inference_step(sample, model)

hyps.extend(h)
idxs.extend(list(sample['id']))

# sort based on the order before preprocess
hyps = [x for _,x in sorted(zip(idxs,hyps))]

with open(outfile, "w") as f:
for h in hyps:
f.write(h+"\n")
1
generate_prediction(model, task)
1
raise

Back-translation

Train a backward translation model

  1. Switch the source_lang and target_lang in config
  2. Change the savedir in config (eg. “./checkpoints/transformer-back”)
  3. Train model

Generate synthetic data with backward model

Download monolingual data

1
mono_dataset_name = 'mono'
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
mono_prefix = Path(data_dir).absolute() / mono_dataset_name
mono_prefix.mkdir(parents=True, exist_ok=True)

urls = (
'"https://onedrive.live.com/download?cid=3E549F3B24B238B4&resid=3E549F3B24B238B4%214986&authkey=AANUKbGfZx0kM80"',
# # If the above links die, use the following instead.
# "https://www.csie.ntu.edu.tw/~r09922057/ML2021-hw5/ted_zh_corpus.deduped.gz",
# # If the above links die, use the following instead.
# "https://mega.nz/#!vMNnDShR!4eHDxzlpzIpdpeQTD-htatU_C7QwcBTwGDaSeBqH534",
)
file_names = (
'ted_zh_corpus.deduped.gz',
)

for u, f in zip(urls, file_names):
path = mono_prefix/f
if not path.exists():
if 'mega' in u:
!megadl {u} --path {path}
else:
!wget {u} -O {path}
else:
print(f'{f} is exist, skip downloading')
if path.suffix == ".tgz":
!tar -xvf {path} -C {prefix}
elif path.suffix == ".zip":
!unzip -o {path} -d {prefix}
elif path.suffix == ".gz":
!gzip -fkd {path}

TODO: clean corpus

  1. remove sentences that are too long or too short
  2. unify punctuation

hint: you can use clean_s() defined above to do this

1

TODO: Subword Units

Use the spm model of the backward model to tokenize the data into subword units

hint: spm model is located at DATA/raw-data/[dataset]/spm[vocab_num].model

1

Binarize

use fairseq to binarize data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
binpath = Path('./DATA/data-bin', mono_dataset_name)
src_dict_file = './DATA/data-bin/ted2020/dict.en.txt'
tgt_dict_file = src_dict_file
monopref = str(mono_prefix/"mono.tok") # whatever filepath you get after applying subword tokenization
if binpath.exists():
print(binpath, "exists, will not overwrite!")
else:
!python -m fairseq_cli.preprocess\
--source-lang 'zh'\
--target-lang 'en'\
--trainpref {monopref}\
--destdir {binpath}\
--srcdict {src_dict_file}\
--tgtdict {tgt_dict_file}\
--workers 2

TODO: Generate synthetic data with backward model

Add binarized monolingual data to the original data directory, and name it with “split_name”

ex. ./DATA/data-bin/ted2020/[split_name].zh-en.[“en”, “zh”].[“bin”, “idx”]

then you can use ‘generate_prediction(model, task, split=“split_name”)’ to generate translation prediction

1
2
3
4
5
6
# Add binarized monolingual data to the original data directory, and name it with "split_name"
# ex. ./DATA/data-bin/ted2020/\[split_name\].zh-en.\["en", "zh"\].\["bin", "idx"\]
!cp ./DATA/data-bin/mono/train.zh-en.zh.bin ./DATA/data-bin/ted2020/mono.zh-en.zh.bin
!cp ./DATA/data-bin/mono/train.zh-en.zh.idx ./DATA/data-bin/ted2020/mono.zh-en.zh.idx
!cp ./DATA/data-bin/mono/train.zh-en.en.bin ./DATA/data-bin/ted2020/mono.zh-en.en.bin
!cp ./DATA/data-bin/mono/train.zh-en.en.idx ./DATA/data-bin/ted2020/mono.zh-en.en.idx
1
2
# hint: do prediction on split='mono' to create prediction_file
# generate_prediction( ... ,split=... ,outfile=... )

TODO: Create new dataset

  1. Combine the prediction data with monolingual data
  2. Use the original spm model to tokenize data into Subword Units
  3. Binarize data with fairseq
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Combine prediction_file (.en) and mono.zh (.zh) into a new dataset.
#
# hint: tokenize prediction_file with the spm model
# spm_model.encode(line, out_type=str)
# output: ./DATA/rawdata/mono/mono.tok.en & mono.tok.zh
#
# hint: use fairseq to binarize these two files again
# binpath = Path('./DATA/data-bin/synthetic')
# src_dict_file = './DATA/data-bin/ted2020/dict.en.txt'
# tgt_dict_file = src_dict_file
# monopref = ./DATA/rawdata/mono/mono.tok # or whatever path after applying subword tokenization, w/o the suffix (.zh/.en)
# if binpath.exists():
# print(binpath, "exists, will not overwrite!")
# else:
# !python -m fairseq_cli.preprocess\
# --source-lang 'zh'\
# --target-lang 'en'\
# --trainpref {monopref}\
# --destdir {binpath}\
# --srcdict {src_dict_file}\
# --tgtdict {tgt_dict_file}\
# --workers 2
1
2
3
4
5
6
7
# create a new dataset from all the files prepared above
!cp -r ./DATA/data-bin/ted2020/ ./DATA/data-bin/ted2020_with_mono/

!cp ./DATA/data-bin/synthetic/train.zh-en.zh.bin ./DATA/data-bin/ted2020_with_mono/train1.en-zh.zh.bin
!cp ./DATA/data-bin/synthetic/train.zh-en.zh.idx ./DATA/data-bin/ted2020_with_mono/train1.en-zh.zh.idx
!cp ./DATA/data-bin/synthetic/train.zh-en.en.bin ./DATA/data-bin/ted2020_with_mono/train1.en-zh.en.bin
!cp ./DATA/data-bin/synthetic/train.zh-en.en.idx ./DATA/data-bin/ted2020_with_mono/train1.en-zh.en.idx

Created new dataset “ted2020_with_mono”

  1. Change the datadir in config (“./DATA/data-bin/ted2020_with_mono”)
  2. Switch back the source_lang and target_lang in config (“en”, “zh”)
  3. Change the savedir in config (eg. “./checkpoints/transformer-bt”)
  4. Train model

References

  1. Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., … & Auli, M. (2019, June). fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations) (pp. 48-53).
  2. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017, December). Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 6000-6010).
  3. Reimers, N., & Gurevych, I. (2020, November). Making Monolingual Sentence Embeddings Multilingual Using Knowledge Distillation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 4512-4525).
  4. Tiedemann, J. (2012, May). Parallel Data, Tools and Interfaces in OPUS. In Lrec (Vol. 2012, pp. 2214-2218).
  5. Kudo, T., & Richardson, J. (2018, November). SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (pp. 66-71).
  6. Sennrich, R., Haddow, B., & Birch, A. (2016, August). Improving Neural Machine Translation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 86-96).
  7. Edunov, S., Ott, M., Auli, M., & Grangier, D. (2018). Understanding Back-Translation at Scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 489-500).
  8. https://github.com/ajinkyakulkarni14/TED-Multilingual-Parallel-Corpus
  9. https://ithelp.ithome.com.tw/articles/10233122
  10. https://nlp.seas.harvard.edu/2018/04/03/attention.html
1