1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
| import logging import os import sys
import fire import numpy as np from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from transformers import ( T5ForConditionalGeneration, AutoTokenizer, )
sys.path.append('../') from utils import EvaluationDataset, evaluation_results, get_metrics_results
def main(log_dir: str, checkpoint_path: str, data_path: str, item_indexing: str, task: str, dataset: str, cutoff: int, test_prompt: str, eval_batch_size: int, metrics: str): log_file = os.path.join(log_dir, dataset, checkpoint_path.replace('.', '').replace('/', '_') + '.log')
for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
model = T5ForConditionalGeneration.from_pretrained(checkpoint_path) tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) tokenizer.pad_token_id = ( 0 ) tokenizer.padding_side = "left" test_data_file = os.path.join(data_path, dataset, f'{dataset}_{task}_{item_indexing}_test_{test_prompt}.json') logging.info("test_data_file=" + test_data_file) test_data = load_dataset("json", data_files=test_data_file, field='data') model.eval() metrics = list(metrics) generate_num = max([int(m.split('@')[1]) for m in metrics]) task_list = np.unique(test_data['train']['task']) for t in task_list: logging.info(f'testing on {t}') subset_data = test_data.filter(lambda example: example['task'] == t) dataset = EvaluationDataset(subset_data['train'], tokenizer, cutoff) dataloader = DataLoader(dataset, batch_size=eval_batch_size, shuffle=False) test_total = 0 metrics_res = np.array([0.0] * len(metrics)) for batch in tqdm(dataloader): """ 下面是一个batch的案例: {'input_ids': tensor([[ 3, 21419, 12587, ..., 0, 0, 0], ..., [ 3, 21419, 12587, ..., 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, ..., 0, 0, 0], ..., [1, 1, 1, ..., 0, 0, 0]]), 'label': tensor([[12587, 2118, 834, 22504, 2577, 1, 0], [12587, 2118, 834, 19993, 4867, 1, 0], ..., [12587, 2118, 834, 19993, 5062, 1, 0]])} """
prediction = model.generate( input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], max_length=30, num_beams=generate_num, num_return_sequences=generate_num, output_scores=True, return_dict_in_generate=True, ) output_ids = batch['label'] prediction_ids = prediction["sequences"] prediction_scores = prediction["sequences_scores"] gold_sents = tokenizer.batch_decode( output_ids, skip_special_tokens=True ) generated_sents = tokenizer.batch_decode( prediction_ids, skip_special_tokens=True ) rel_results = evaluation_results(generated_sents, gold_sents, prediction_scores, generate_num) test_total += len(rel_results) metrics_res += get_metrics_results(rel_results, metrics)
metrics_res /= test_total for i in range(len(metrics)): logging.info(f'{metrics[i]}: {metrics_res[i]}')
if __name__ == "__main__": fire.Fire(main)
|