1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
| import os import sys
import fire import gradio as gr import torch import transformers from peft import PeftModel from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from utils.callbacks import Iteratorize, Stream from utils.prompter import Prompter
def main( load_8bit: bool = False, base_model: str = "", lora_weights: str = "tloen/alpaca-lora-7b", prompt_template: str = "", server_name: str = "0.0.0.0", share_gradio: bool = False, ): base_model = base_model or os.environ.get("BASE_MODEL", "") assert ( base_model ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template) tokenizer = LlamaTokenizer.from_pretrained(base_model)
device_map = "mps"
model = LlamaForCausalLM.from_pretrained( base_model, device_map=device_map, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, lora_weights, device_map=device_map, torch_dtype=torch.float16, )
model.config.pad_token_id = tokenizer.pad_token_id = 0 model.config.bos_token_id = 1 model.config.eos_token_id = 2
if not load_8bit: model.half()
model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model)
def evaluate( instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, stream_output=False, **kwargs, ): prompt = prompter.generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device_map) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, )
generate_params = { "input_ids": input_ids, "generation_config": generation_config, "return_dict_in_generate": True, "output_scores": True, "max_new_tokens": max_new_tokens, }
if stream_output: def generate_with_callback(callback=None, **kwargs): kwargs.setdefault( "stopping_criteria", transformers.StoppingCriteriaList() ) kwargs["stopping_criteria"].append( Stream(callback_func=callback) ) with torch.no_grad(): model.generate(**kwargs)
def generate_with_streaming(**kwargs): return Iteratorize( generate_with_callback, kwargs, callback=None )
with generate_with_streaming(**generate_params) as generator: for output in generator: decoded_output = tokenizer.decode(output)
if output[-1] in [tokenizer.eos_token_id]: break
yield prompter.get_response(decoded_output) return
with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) yield prompter.get_response(output)
gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Tell me about alpacas.", ), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider( minimum=0, maximum=1, value=0.1, label="Temperature" ), gr.components.Slider( minimum=0, maximum=1, value=0.75, label="Top p" ), gr.components.Slider( minimum=0, maximum=100, step=1, value=40, label="Top k" ), gr.components.Slider( minimum=1, maximum=4, step=1, value=4, label="Beams" ), gr.components.Slider( minimum=1, maximum=2000, step=1, value=128, label="Max tokens" ), gr.components.Checkbox(label="Stream output"), ], outputs=[ gr.components.Textbox( lines=5, label="Output", ) ], title="🦙🌲 Alpaca-LoRA", description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", ).queue().launch(server_name=server_name, share=share_gradio)
if __name__ == "__main__": fire.Fire(main)
|